This is default featured slide 1 title
This is default featured slide 2 title
 

Virtual automotive engineerin

That’s one reason Virtual Reality and Augmented Reality technologies—often shorthanded to VR and AR—are emerging as immensely useful development tools.

“Using these technologies helps in the decision-making process,” explained Joe Guzman, Engineering Group Manager for Global Virtual Design for General Motors. “You are able to quickly mock up digitally and in 3D what the physical product will look like two years later,” he said.

Creating a VR prototype takes hours or maybe days—compared to weeks or months for a physical prototype, Guzman said.

But why the extra expense of VR or AR technologies when two-dimensional screen renderings of the CAD data are easily accessible? Although CAD renderings are good, they are lacking when it comes to human interactions: the ability to walk around, sit in, or understand how to access a part. Virtual reality and AR provide a sense of how a product will interact with humans who use and build it, how it will live in a three-dimensional world.

“It is especially useful for executives and program management, people who are responsible for the whole vehicle or the line of vehicles, but make no mistake, this technology is useful for every part of the business,” stated Guzman. This includes trainers for the assembly plant, D&R engineers trying to understand assembly and serviceability, or marketers creating brochures. Physical effects include how well flush-and-gaps show up against lighter or darker paints. “People use this from well before program kickoff all the way through to Job 1 and sometimes longer,” he said.

Guzman related that GM finds the company’s four-sided, six-foot CAVE environment (see photo) particularly useful, where any number of individuals can move and observe a 3-D projection of a entire vehicle. He was also quick to point out that the company takes advantage of all levels of available VR, including the less-expensive mixed-reality headsets aimed at individual users.

“We are looking for strategic partners to help us,” he said, noting that a technology developed for the home market might have limitations in durability or safety in a work setting, hence the need for further development.

Collaboration and systems engineering

What currently fuels excitement in this area is the growing pace of development, especially for head-mounted systems. “I have been working in this technology for a long time and improvements were steady but small until about five years ago,” remarked Elizabeth Baron, Virtual Reality and Advanced Visualization Technical Specialist for Ford. “The big leap has been in headsets from companies like Oculus with its Rift and HTC with its Vive. Developed for gamers, those two headsets started this next revolution.”

While acknowledging the usefulness of 3-D VR and AR to any single individual, the contribution to systems engineering and collaboration are what make the technologies special for her. “It allows multiple disciplines in the company to communicate effectively,” she stated. An expert working on ergonomics and visibility can effectively talk to body structure engineers worrying about crash and safety as well as, say, an electrical engineer concerned with wiring-harness placement and clearance.

But increasing reliance on VR and AR for systems engineering requires careful selection of the CAD data to use, according to Baron. “By taking as much information from all of the engineering areas as we can, aimed at systems engineering, we get this immersive environment that crosses all of those disciplines,” she explained. Collaboration reaches across continents as well as disciplines: a Ford employee in Australia can interact through the VR room in real time with a colleague in Dearborn, MI.

The data also can include manufacturing processes and tolerances; users can see in 3-D the visual effect of GD&T tolerances from part-to-part at their extremes, or twist deformations from assembly. In the mathematical world of tolerance stack-up calculations, it is difficult to understand those effects as a customer would see them.

“The user experience is the centerpiece of our VR technology,” Baron stated. “We believe that Ford is leading in the use of real-time ray tracing (a computationally-intensive technique that creates scenes with realistic reflections and other specular effects) for immersive VR reviews.”