This is default featured slide 1 title
This is default featured slide 2 title

The motorcycle’s future

In this office, a team of Honda R&D Co. engineers and computer scientists are developing autonomous machines and robotics. Officially called the Honda Innovation Laboratory, the independent think-tank is more commonly referred to as “Center X.” It is an open laboratory collaborating with outside research and academic institutions, as well as with venture enterprises and individuals and is linked with Honda Xcelerator open-innovation programs based out of the company’s Silicon Valley Lab.

Honda has been researching automated driving and related technologies for more than 30 years, noted R&D President Yoshinobu Matsumoto. He cited development of “Gyro-cater,” the world’s first in-vehicle navigation system offered for the Accord in 1981. Knowledge from that program eventually led to Honda’s extensive bipedal (two-legged) locomotion studies—which in turn led to ASIMO, the now-famous and beloved robot that has become an icon of Honda’s controls and artificial-intelligence expertise.

Technology developed at Center X for ASIMO and for the racetrack now is helping Honda develop two-wheelers that can stand up by themselves, Matsumoto told Automotive Engineering. The small gyro sensor originally used in ASIMO inspired development of sensors that recognize the attitude (lean angle) of a racing motorcycle, helping to govern engine power under extreme G forces while the machine is leaned hard in a corner. The technology was incorporated in Honda’s factory RC-V series MotoGP bike in 2011, he explained.

Engineers’ analysis of the rider’s thoughts and movements, rather than the behavior of the bike, led to the new electronic attitude controls that make the rider’s work easier. On the opposite end of the performance spectrum, Honda’s Uni-Cub self-balancing, two-axis personal mobility device first demonstrated in 2013 enables the seated rider to control speed, move in any direction and stop, all by simply shifting body weight.

The next step is software that can control the Uni-Cub via an “app” from mobile devices—expanding the machine’s value and functionality. Uni-Cub creator Shinichiro Kobashi has indicated the compact little two-wheeled unit may be released in time for demonstration at the 2020 Tokyo Olympics.

Toward the autonomous motorcycle

An obvious technology pathway from the MotoGP and Uni-Cub learnings is toward the autonomous motorbike and the ‘personal transporter’ capable of being summoned from their parking areas and sent back after the day’s riding/mobility duties are finished. More sensors and control technologies like those being integrated into passenger vehicles (cameras, radar and obstacle detection, lane keeping, etc.) are required, of course. And challenges related to packaging such hardware within the limited space on two-wheelers are significant.

Earlier this year, at CES 2017, Honda showed its latest step in the autonomous-bike journey: Riding Assist ( The excitement it created among CES show-goers always began with, “Did you see the motorcycle that can balance itself? That’s cool!” and “Honda has a robo-bike!”

And the machine, based on a production NC750S [a sporty 750cc twin-cylinder commuter bike sold in Europe] does just that.

Riding Assist is particularly effective and useful in such taxing situations as stop-and-crawl traffic or the common parking-lot fall when the rider, perhaps fatigued or distracted, is caught off-balance and lets the bike fall onto the ground. The Riding Assist prototype stands upright when stopped and at speeds less than 3 to 4 km/h (about 1.9 to 2.4 mph) with no manual input from the rider. If the rider dismounts the motorcycle, it remains standing as long as the balancing system is engaged.

The Riding Assist program’s chief engineer, Hiroyuki Nakata, is a veteran engineer-development-rider (with specialist background in braking) at the Honda Motorcycle R&D Center at Asaka. Nakata also is responsible for advanced-safety technologies. He acknowledges that it has for several years been an ongoing project at Honda to enhance motorcycle safety by combining robotics research with the company’s championship-winning motorcycle technology. He reasons that the formidable combination could realize “dream technologies for new mobility.”